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Results from the theory of U-statistics are used to characterize the microcanoni- 
cal partition function of the N-vortex system in a rectangular region for large N, 
under various boundary conditions, and for neutral, asymptotically neutral, and 
nonneutral systems. Numerical estimates show that the limiting distribution is 
well matched in the region of major probability for N larger than 20. 
Implications for the thermodynamic limit are discussed. Vortex clustering is 
quantitatively studied via the average interaction energy between negative and 
positive vortices. Vortex states for which clustering is generic (in a statistical 
sense) are shown to result from two modeling processes: the approximation of 
a continuous inviscid fluid by point vortex configurations; and the modeling of 
the evolution of a continuous fluid at high Reynolds number by point vortex 
configurations, with the viscosity represented by the annihilation of close 
positive-negative vortex pairs. This last process, with the vortex dynamics 
replaced by a random walk, reproduces quite well the late-time features seen in 
spectral integration of the 2d Navier Stokes equation. 

KEY WORDS:  Point vortices; microcanonical ensemble; negative tem- 
perature; thermodynamic limit; 2d turbulence; U-statistics. 

1. I N T R O D U C T I O N  

The statistics and accompanying thermodynamics of objects whose 
pairwise interaction energy in two dimensions is 

v(ri, rj) = -FiFj l og  I r i -  rj[ z 

have received much attention both for their intrinsic interest and their close 
representation of physical objects such as spin excitations, screw disloca- 
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tions, line charges, guiding-center plasmas, superconducting fluxoids, and 
fluid vortices. Here, we are interested in fluid vortices and the structure of 
the microcanonical phase space associated with a periodic infinite lattice 
having N vortices with strengths Fi per unit cell. We also consider N 
vortices in a box (i.e., rigid walls), which is equivalent to correlated vortices 
in a periodic cell. Of particular interest are the statistical properties of 
vortices as the energy per vortex becomes large. This emphasis will be 
justified by showing how high-energy vortex states naturally arise from 
point vortex models of continuous vorticity. 

Our results are both analytic and numerical. The existence of an 
asymptotic form of the microcanonical density of states at large N is 
established rigorously, while quantitative attributes are found numerically. 
Likewise, discussions of high-energy vortex states, such as the modeling of 
continuous flows and vortex clumping at high energy, use analytical 
arguments buttressed with numerical examples. Other parts are purely 
numerical, like the probability density of the average interaction energy 
between + and - vortices and the decay of high-Reynolds-number flow. 

Onsager (1) observed that the boundedness of the total phase space of 
any finite number N of vortices implies that the volume of phase space per 
unit energy interval necessarily decreases for sufficiently high energy. The 
problem is to determine the thermodynamics, i.e., the limiting relationship 
between phase space and energy as N ~  oe while the vortex density 
N/A =const. Negative temperature is implied by a phase space that 
decreases with energy, but Fr6hlich and Ruelle give strong evidence that 
the formal thermodynamic limit of this system eliminates the negative- 
temperature region/2~ However, because the density of states of any finite 
vortex system has a maximum at finite energy, their result can be inter- 
preted as showing the absence of a thermodynamic limit in the usual sense 
of a sufficiently large but finite system acquiring the intrinsic properties of 
the limiting infinite system. We show there is a unique probability density 
for the phase space that mereJ~ shifts to higher energy density, as N 
increases, by the amount log x/N. 

In Section 2 we show analytically and by numerical estimate that for 
any combination o f+and -vo r t i c e s  in a periodic unit cell a limiting 
probability density (of phase space) exists for the interaction component of 
the vortex energy density. Results for vortices in a box are similar, but 
differ in detail. In that part of the energy region accessible by random 
sampling this probability density has essentially converged for N>20.  
Therefore, it is possible to consider the thermodynamics of the vortex 
lattice system with respect to this limiting probability density (by taking 
the logarithm to obtain the entropy). In this sense, a negative-temperature 
region does exist in the limit N--* oo. This goes beyond the Salzberg- 
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Prager-May equation of state, whose derivation depends only on the form 
of the argument of the probability density, not its limiting properties. (3 5) 

Characteristics of high-energy vortex states such as the interplay 
between high energy, high N, and total vorticity will be discussed in 
Section 3. An important consequence of the limiting probability density 
is the inevitable emergence of negative-temperature states when a vortex 
distribution, chosen to model a given continuous velocity distribution, is 
successively refined by increasing the number of vortices at constant total 
vorticity and constant total energy. Even though the probability density of 
the interaction energy per vortex quickly and uniformly converges as N 
increases, certain other characteristics, e.g., the average interaction between 
vortices of unlike sign, converge in a different fashion. 

In Section 4 we employ the above results to model the decay of high- 
Reynolds-number fluids as a purely statistical process whereby an initial 
random distribution of point vortices is permitted to range over its con- 
stant-energy phase volume through a random walk. Viscosity is introduced 
by annihilating + a n d -  vortex pairs that approach within a small distance. 
We find the salient features of such decay, such as the emergence of 
coherent vortex structures and their subsequent evolution to only two (of 
opposite vorticity) per unit cell, are reproduced by the statistical treatment. 
Associated phenomena, such as the development of the energy spectra, the 
overall relative loss of vorticity and energy, and the relative speed of these 
losses, also resemble results from direct integration of the Navier-Stokes 
equation by spectral techniques. The existence of a limiting probability 
density provides a justification for following the contraction in phase space 
(due to annihilation of vortex pairs) as the evolution of a single system. 
That system has the statistical property that the loss of vortex pairs reduces 
the total energy less than it increases the energy density of the remaining 
vortices, which are thereby driven deeper into the negative-temperature 
region, where the formation of well-separated regions of like-sign vorticity 
is generic. 

Finally, a discussion and summary of the results appear in Section 5, 
including some checks on the accuracy of common approximations, such 
as the random-phase approximation and the sinh-Poisson equation. 

2. V O R T E X  S T A T I S T I C S  

The statistics of 2d point vortices has been studied exactly by Fr6hlich 
and Ruelle (2~ and approximately by several others, including Montgomery 
and Joyce, (6'7) Edwards and Taylor, (8) Seyler, (9) and Lundgren and 
Pointin (1~ Much of this is reviewed by Kraichnan and Montgomery. (5) 
With the help of U-statistics we obtain exact results which extend previous 
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work. Although we make no approximations, our numerical estimates are 
subject to random sampling error. While we have no disagreement with the 
results of ref. 2, we can now argue against an interpretation of those results 
that would deny an existence to negative temperatures for vortices. In fact, 
we emphasize the properties of the negative-temperature state. In general, 
the problems are reminiscent of, if less severe than, the 3d Coulomb case, 
which has been treated thoroughlyJ TM 

Here the system will be a periodic cell of area A containing N vortices 
with an energy per vortex E(ri ..... r u ) .  The microcanonical statistics is 
given by the distribution function qSu(g, A), viz., the normalized volume of 
phase space with energy density E(rl,..., r u )  less than g/N, 

CI)N(g,A)=~ f ''' f drl . . .drNO(g- NE(rl ..... rN)) (2.1) 

where O(x) is the step function. The probability density (partition function 
or structure function) is g2N= (Oq~u/Og)A, the entropy (ignoring correct 
Boltzmann counting as not relevant here) is S(g, A ) =  xB log ANf2N, and 
temperature 1/T=(Os/og)A. These definitions acquire thermodynamic 
meaning if a limit exists for N ~  0% N/A =const.  While a limit does exist 
for vortices in a box, as shown by Fr6hlich and Ruelle, (2) the convergence 
is not uniform, which reduces the usefulness of the associated thermo- 
dynamic properties inasmuch as they do not apply to any finite system 
over the entire range of g. However, the convergence is uniform when a 
component of E corresponding to the interaction of a vortex with its 
periodic replicas (lattice) or images (box) is removed. This component is 
simply (log N)/2. 

Using Ewald methods (9) or similar procedures, one can write the 
lattice energy density (energy per vortex) as (14'15) 

E(rl ..... ru) = F--SE+ ~ -  log + e(ri,..., rN) (2.2) 

1N--I ~ 
e(rl,..., rN) = ~ ~ Firjf(ri-rj;L1, L2) (2.3) 

i=1  j = i + l  

where F 2 = (l/N) Z F?  and E is a constant that depends on the shape but 
J 

not the area of the unit cell (which has sides L1 and L 2 and area 
A = ILl x L2]). The units of energy density E are p72/4rc, where p is the 
fluid mass per area and 7 is the unit of circulation, length squared per time. 
It should be noted that (2.2) and its Ewald equivalent are derived by omit- 
ting the infinite energy associated with any nonneutrality of the system. 
The system consists of discrete vortices plus an inert, uniform, neutralizing 
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background, as needed. The lattice has a density D = N/A, and we will fre- 
quently take 1Fj] = 1 and D = 1. It is sufficient to use the square unit cell, 
ILl[ = [Lzl = L, L~ I L2, for whichf(r )  has the formf(lxl/L, ]y[/L). There- 
fore, the phase space for the vortex variables in f is the N-fold Cartesian 
product of the unit square, 0 ~< xjL,  y / L  < 1. (Hereafter, when r appears 
as an argument of f it will be understood as r/L.) Specifically, for the 
square unit cell, 

~z 1 {2~ E = g -  og 

and 

fi  [1 - exp( -2~) ]  2} = -1.31053 (2.4) 
j = l  

f ( r )  = f(x, y) 

=2re [ ly l ( ly l  - 1 ) + ~ ]  

- log [ 1 - 2  cos(2~zx) exp( - 2 ~  [J + Yl) § exp( -4~z [j + y[ )] 
j oo 

(2.5) 

Machine accuracy is achieved in the above products for IJl ~< 5. 
In principle, it is straightforward to obtain a numerical picture of the 

probability density if2 N in the region of g where Qu(g, A) is maximum by 
counting the relative number of random configurations that have energy 
between equal intervals, where the vortex positions rj are chosen inde- 
pendently and uniformly distributed over the unit square. That is, the 
density of states ff2N(g , A) can be found as the density function of the 
energy considered as a random variable, given independent, identically 
and uniformly distributed random vortex positions. The histograms so 
produc__ed for/2 N converge rapidly in shape but are shifted to larger energy 
by NF 2 log(N)/2. This agrees with ref. 2, where it was proven that the slope 
of limu~o~ f2x(g, A) is positive for all g. 

Extimates of such probability densities from 50,000 events for each N 
are plotted in Fig. 1. Different vortex sign mixtures are used and, to 
subtract the shift mentioned above, the results are given as a function of 
e=E-E- - (1 /2 ) logN .  To permit inspection of fluctuations relative to 
the number of events per energy interval, the probability density is 
not smoothed or normalized. The units are such that E =  E =  -1.31053 
for any N = p  2 vortices on a square grid with spacing l/p, i.e., 
esq . . . .  grid = --log(N)/2. 

Not only does the probability density converge rapidly, but its con- 
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Fig. 1. Histogram of numerical probability density g2N(e ) (unnormalized) for N vortices in 
a square periodic cell as a function of the interaction energy per vortex e. The total energy 
per vortex is E+log~/-N+e(ri ..... rN). The magnitude of the vortex strengths is 1, but the 
signs are mixed as indicated in parentheses by the number of+ vortices. The total number of 
events was 50,000 for each value of N. No smoothing was performed on this or subsequent 
data, with the exception of Figs. 9 and 16. The lower limit of finite probability density for 
N = 10, 20, 40 vortices of the same sign is shown by the vertical lines. 

vergent form is independent  of  the signs of  Fj. This nonintuitive feature is 
a result of the existence of a limiting distribution for the r andom variable 
e and its part icular  form as a sum of correlated r andom variables. (16) For  
fixed N the probabil i ty density does depend on the signs of Fj, e.g., systems 
of equal-sign vortices have a lowest energy emin = -- log(N)/2,  corre- 
sponding to the square lattice, while the energy of  mixed sign systems is 
unbounded  below. The bounds  emin are indicated in Fig. 1 for N =  10, 20, 
and 40. However,  these differences occur in a region of vanishing relative 
probabil i ty density and are of no concern here. Moreover ,  they disappear 
for fixed e as N ~ oo. 

Because it is impor tan t  for determining the type of probabil i ty density 
(normal  versus nonnormal) ,  we note that  the integral o f f ( r )  over the unit 
cell, i.e., the expected value ( f ) ,  is zero. This result follows from inspecting 
either the origins (9) o f f  or  its implicit properties as a lattice interaction. We 
do the latter. If  m = p2 positive vortices are arranged on a regular square 
grid gj in their periodic cell the energy per vortex E(gl  ---gm) is, by defini- 
tion, the same as that  for a single vortex in its periodic cell, E(rl) .  Equat ing 
these energies as given by (2.2) gives 

1 1 f ( g ~ -  gj) = ~  j= f ( g l  -- gj) 
-- 2 1 ~  i<j  (2.6) 
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where we used the equivalence of grid point differences. Let gl be the origin 
and write the integral over the unit cell as 

ff ! d g f ( g ) =  lim --  f ( g , ) =  lim - log(m)=O (2.7) 
m ~ o o m  / = 2  m ~ o o  m 

"Expected value" is a linear operator, so a simple corollary is 

1 x 
(e) = ~ Y~<j r , ~ ( f ( r , -  r j ) )  = 0 (2.8) 

Apart from the numerical evidence of Fig. 1, the existence of a limiting 
distribution for e follows from general theorems on "U-statistics." In 
particular, a U-statistic of degree two for symmetric kernel has the form 

2 N 1 N 

E E f(r,, rj) (2.9) UN(rl,...,rN) N(N 1) *=1 j= ,+l  

It is known that if ( f 2 ) <  oO and the expected value of f ( r l ,  r2) with 
respect to r 1 is zero for all r2, then NUN converges in distribution to a non- 
normal distribution whose characteristic function is specified in terms of 
eigenvalues o f f  {17) When all vortices have the same sign, e clearly has the 
form NUN and ( f 2 ) ~ 5 1 o g ( r ) 2  r d r <  o% so the theorem applies and, 
indeed, the probability density of Fig. 1 both converges and is nonnormal. 
The fact that e converges to the same distribution regardless of the sign 
mixture is a special feature of the form of e. ~ Moreover, using the 
methods of ref. 16, it can be shown that the magnitudes ]Fil are also irrele- 
vant; for arbitrary Fj the limiting distribution of elF 2 depends only on 
f(ri, rj). Therefore, it is a convenience, not a restriction, to assume equal 
magnitudes for Fj. 

The asymptotic distribution theory of U-statistics and related 
forms {'7'~6) seem to be little employed by the physics community, even 
though many statistical and thermodynamic quantities are naturally con- 
nected with these limiting distributions. For  vortices, the existence of a 
limiting density of states with a stationary and well-defined maximum as a 
function of e allows us to speak of a statistical limit with respect to e, in 
which negative-temperature states exist (and, in fact, account for more than 
half of the volume of states in the system). With respect to the total energy 
per vortex, E =  Eo + log x/-N+ e, this maximum moves to infinity as N 
increases, giving a different statistical limit with no negative-temperature 

states. {2) The relevant physical point is that the log ~ divergence is so 
slow that any particular system will have negative-temperature states at 
accessible energies. 

822/65/3-4-6 
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Consider now vortices in a square box. As shown in Fig. 2, the box is 
equivalent to 1/4 of a periodic cell containing independent vortices and 3/4 
of the cell containing dependent vortices. N vortices in the box give 4N 
vortices in the periodic cell at correlated positions. As a result, we may 
write for the box 

I I  N N--1N 1 
e(r l  ..... r N ) = ~  F 2  X b ( r i ) +  Z Z Viffjh(ri, rj) (2.10) 

i = 1  i = 1  j = i + 1  

where b(r) is the interaction of a vortex with its own three images, 

b(r)=�89 O)-f(O, 1 - 2 y ) + f ( 1 - Z x ,  1 - 2 y ) ]  (2.11) 

and h(rl, r2) is the interaction between two vortices and their images, 

h( r l ,  r 2 ) =  f ( l x , - x 2 1 ,  [Yl - Y 2 1 ) - f ( 1  - - X  1 - - X 2 ,  [Yl -- Y21) 

--f([xl--X2[, 1 - - y l - - Y 2 ) + f ( 1 - - X l - - X  2, l - - y , - -  y2) (2.12) 

An alternative and more compact expression for e in a box has been given 
in terms of Jacobi elliptic functions by Penna/1*) 

To write e in terms of a U-statistic, let #(r) = ~ h(r, s) ds, # = 5 #(r) dr, 
and define 

g(rl, r2) = h ( r l ,  r2) - #(rl) - #(r2) + # (2.13) 

Now g is a degenerate kernel (i.e., 55 g drl dr2=0),  so the U-statistic 
~=(1 /N)  Z FiF;g(r,, rj) converges to a limiting distribution that is in 
general not normal. We have 

F 2 1 # s FiFj (2.14) e = e + ~ E b(ri) + N ,<aZ V f j  [-#(r~) + #(rj)] - ~ i<j 

box 

�9 o 
o �9 

Fig. 2. Equivalence of box boundary conditions with a periodic cell four times as large. The 
filled and open circles represent vortices of opposite sign. Only the vortex positions in the box 

are independent. 
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Suppose that the distribution of unit circulations in the box is Nn+ 
positive and Nn negative. Using the basic identity (~2/- i )2= 
Y'. F 2 + 2 Z FiFj and setting b(ri) = bi, #(ri) = #z, we find 

e=e+['zkt+-F2~(bi--#i)+(n+-n2 N )IF" ~'/'i(/'ti--~) (2.15) 

For  a neutral system the last sum in (2.15) vanishes, while the 
remaining sum tends to a constant with probability one, so the distribution 
of e tends to that of g shifted by a constant. Thus, the statistical limit exists 
and is different from that of the system with periodic boundary conditions 
(although still nonnormal in general). Estimates of the neutral system 
probability density for various N are shown in Fig. 3. The convergence is 
rapid, as in Fig. 1, but the approach to convergence is different. The width 
is narrower than for the periodic cell and, as expected, the shape is nonnor- 
mal and the mode (maximum) occurs at lower energy. 

Nonneutral  systems in the box are qualitatively different. If 
n+ - n _  -r 0, the distribution of e is dominated by the rightmost term of 
(2.15), for which the central limit theorem implies the asymptotic distribu- 
tion 

[ e -  (n+ - n _ )  2 NF2#/2] 2 ~] 
g2N(e) ~ exp [ -  2 ~ 7 - - n - ~ ( ~ ~ 2 ) j  (2.16) 

where < #2 ) _ ~ 2  = Var/~i, the variance of #i. Thus, the total energy in the 
box Ne increases as N 2, ruling out a physical limit. Estimates of the 
probability density for all positive vortices are shown in Fig. 4. The 

5 0 0 0  

Neut ra l  vort ices in a box. 

4000 -Z.  i 
�9 3 0 0 0  A 8 

' ~  �9 20 

.~ 2000 �9 �9 40 
E 
:~ ~ 80 E 

1000" 

O,  
- 3  - 2  -1 0 

e 

Fig. 3. Histogram of numerical probability density ~N(e) (unnormalized) for N vortices in 
a square box as a function of the interaction energy per vortex e. The numbers of + and 

- vortices are equal and the total number of events was 40,000 for each value of N. 
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Positive vortices in a box. ~ N 

4000' [ t  
~ 10 

~ 20 
i 3000 �9 40 

'~ ' �9 80 

.~ 2000 �9 160 

c 
1000 

0 
0.2 -0.1 0.0 0.1 0,2 0.3 0.4 0.5 

e/N 
Fig. 4. Histogram of numerical probability density g?N(e) (unnormalized) for N positive 
vortices in a square box as a function of e/N. The total number of events was 25,000 for each 

value of N. 

numerical convergence of the expected values is ( e N / N )  = 2.20--15.34/N. 
This case is discussed further in Section 5. 

As can be seen from (2.15) and (2.16), there are two variants of 
nonneutral systems which have nontrivial statistical limits: 

1. If the circulation imbalance is proportional to the perimeter of the 
box, ( n + - n _ ) x / N =  c, a constant, then the rightmost term of (2.15) no 
longer dominates, and the distribution for e is a mixture of normal and 
U-statistic with degenerate kernel. We found numerical evidence that the 
statistical limit again exists for this case, and a proof was constructed 
subsequently (K. A. O'Neil and R.A. Redner, to be published). This is 
analogous to the result found for surface charges on 3d Coulomb 
systems. (13) Estimates of the probability densities for various N and the 
edge or perimeter vorticity ( n + - n  ) x / -N= 3 are shown in Fig. 5. The 

2000 
N + - N _  =3qN 

t . 6 ~ , ~  ~ N=16 

1500 - -  = ' ' ' 
E 

'~ 1000 

E 
c 500 

-2 -1 0 1 2 3 4 5 
e 

Fig. 5. Same as Fig. 3 except for nonneutral box systems having ( n + - n ) , , / N = 3 ,  
corresponding to a constant excess vorticity per unit of perimeter. 
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convergence is as rapid as before. By adjusting the amount of edge vor- 
ticity, it would seem possible to move <e)  to any value greater than that 
for the neutral box system. (The existence of an "equation of state" in this 
case was noted by Hauge and Hemmer for positive temperature. (3)) 

2. Alternatively, if the vortex circulations are scaled with N as 
F--* Fo/N, a process we call "refinement," the resulting distribution of total 
energy has mean 

<Ne)=�89  ) 2 F ~ f f h ( r l ,  r2 )dr ,  dr 2 (2.17) 

and variance 

Var Ne = (n + - n = )2 F4 2) (2.18) 

That is, the energy tends to a point distribution, corresponding to the 
energy of fluid in a box with total vorticity ( n + -  n )F0 and constant 
vorticity density. Refinement will be discussed further in the next section. 

3. H I G H - E N E R G Y  V O R T E X  S T A T E S  A N D  R E F I N E M E N T  

Having ensured the existence of a negative-temperature region for 
large N, let us consider some characteristics of that region, with emphasis 
on the periodic cell. We introduce a useful diagnostic for high-energy 
vortex states, discuss the statistical consequences of finely resolved vortex 
models of fluid flow, and mention numerical observations on high-energy 
vortex states. 

Previous work on vortices in the negative-temperature region com- 
monly found that a neutral system separated into clusters of opposite sign 
separated by a distance on the scale of the box or periodic cell. To quantify 
this effect in neutral systems, we introduce a statistical diagnostic of separa- 
tion in the form of the average interaction energy between vortices of 
opposite sign, 

4 N/2 U 

~N:  N 2 Z Z f ( r i -  rj) (3.1) 
i=l j - N ~ 2 + 1  

where the first N/2 vortices are positive. The range of ~N is from --O0 to 
~max = 0.693147 =f(_+0.5,  _+0.5) for a square periodic cell. Near the maxi- 
mum value, ~N indicates to first order the variance of the vortex distribu- 
tions about the centers of the clusters, or the deviation of the centers from 
the limiting separation. (The existence of two clusters is special to neutral 
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systems, as shown later. Also, for box boundary conditions, image vortices 
prevent ( u  from being a useful diagnostic.) 

Consider the expected value of ( u  conditional on e = eo. From (2.3) 
the interaction energy of the neutral system, denoted e+_ ,  may be written, 

1 N+ | N 1 N+ N-- 

e+ = ~ } - ' , } - ' , f ( r i - r j ) +  . . . .  N E E U ( F i - r J ) - N  2 Z f(ri--rJ) (3.2) 
t<J t<J i = l  j = l  

where N + ,  N -  refer to the sets of positive and negative vortices, respec- 
tively. This can be written in terms of ~N and the interaction energy e+ + 
for N positive vortices by adding and subtracting the last term to obtain 

1 ~ ,  f(ri_rj)+N(N/2=e++ +N~N/2 
e+ = N  i<j 

(3.3) 

Recall that the unconditional averages are zero: ( e + _ > = ( e + + > = 0 .  
Therefore, it is reasonable to suppose the weak conditional, e+ = eo ~ 1, 
will affect e+ + only in higher order, ( e+  + ]e+_  > = eo ~ 0. In that case, the 
conditional average value of ~N from (3.3) becomes 

2c  0 
(N(eo) ~ - -  (3.4) 

N 

This is a plausibility argument only. More thorough discussion of (3.4) and 
the fact that N~N is also a U-statistic will not be pursued here. 

In Fig. 6 we show numerical estimates for ~N(e), N =  20, 40, 80, as 
labeled. Also shown is s ) for the same run of 20,000 events that 

0.3 

0.2- 

0.0 

~, �9 80 U 0.1 - 440 

0.2- ~ ~2 

-0.3 . . . . . . . . . . . . . .  
' " " ' ' 2 3 - 2  -1 0 1 

e 

Fig. 6. Average interaction energy ~N b e t w e e n + a n d - - v o r t i c e s  as a function of total 
interaction energy per vortex e. The values of ~u(e) are the average values appearing in the 
corresponding energy bins used for the histogram of the probability densities, only one of 
which is shown, for N =  80. Note the ~u(e) are linear, have slopes proportional to l/N, and 
have a common intersection at 0, the expected value of e. 
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produced the (8o data. These data were generated by finding the average 
value of ~N in each energy interval from random vortex configurations. The 
fiN curves are approximately linear and cross zero at e = 0. The slopes 
obtained from numerical straight-line fits to the curves are 2.08/N, 2.01/N, 
and 2.13/N for N =  20, 40, and 80, respectively, in reasonable agreement 
with (3.4). 

Although Fig. 6 shows ~N(e) is linear for e near 0, it is impractical to 
generate data in this manner for e > 3. Instead we use a random walk pro- 
cedure which visits all the vortices in turn and moves each a random, but 
bounded, distance in the x and y directions. If the resulting step increases 
the energy, it is saved; otherwise not. Only one attempt is made per vortex 
in a cycle which visits all the vortices. In this way much higher energy 
states can be attained. Likewise, the statistical properties at a given energy 
can be explored by similar random steps that 'conserve the system's energy 
within an interval Ae. For  example, ~u(e) c a n  be estimated in this way at 
various e by averaging over all configurations visited by the random walk 
in a small energy interval about the target energy. 

In Fig. 7, samples of ~N(e) for nine different random walk marches to 
high energy are'shown, using N = 20 (five curves) and N = 80 (four curves). 
Also drawn is the linear relation ~u(8)----2e/N taken from Fig. 6; the fact 
that the random walk and the random sample results agree in the region 
of overlap gives confidence in the fairness of the random walk procedure. 
Note that the highest energies attained in Fig. 7 are e ~  30 and 120 for 
N =  20 and 80, respectively, far outside the random sampling region lel < 3. 
We wish to emphasize three features of the data in Fig. 7: 

0.8 

ma~ / 

0.6 

0.4 

0.2 ~i( . = ~o, s c u ~ / z  

- -  N = 80, 4 curves 

0.0 , , , , . . �9 , . . . , �9 �9 �9 , �9 �9 �9 , . . . , . . �9 , �9 �9 . 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

e / N  

Fig. 7. Average interaction energy ~N between + a n d -  vortices as a function of e/N. The -~N 
are the instantaneous values obtained during particular random walks to higher energy. Note 
that the ~N(e) agree with those obtained by random sampling in Fig. 6, from which the 
straight-line slope is taken. The vertical lines marked with asterisks are energy sections for 
probability densities of ~N shown in Fig. 9. 
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1. At high e, ~N(e) takes values near its maximum, indicating that 
most of the volume in phase space at high energies consists of configura- 
tions in which + a n d - v o r t i c e s  are separated into two clumps which have 
centers separated by r = rma x. To the extent that these values are estimates 
of ~N(e), the data in Fig. 7 allow us to predict the time average of the func- 
tion ~U over the evolution of a typical configuration at high energies. Thus 
(assuming that the dynamics of point vortices are ergodic) for almost every 
initial configuration of vortices at high energy, the system will evolve by 
separation of the vortices into two clusters. Such behavior was indeed 
predicted by Onsager (1) and has been observed in many simulations in the 
past, but Fig. 7 represents the first quantitative statement about the 
transition to clusters to appear in the literature, to our knowledge. Further- 
more, being statistical in nature, the information in Fig. 7 is quite general: 
a vortex system having the same phase space and interaction energy, and 
obeying any ergodic, energy-conserving dynamics, should have the same 
clustering behavior. 

2. While all the curves are in close agreement for low e/N, the 
variance in the data increases with increasing e/N, and for large values the 
observed ~N range from near 0.35 to nearly the maximum of 0.7. All these 
configurations exhibit a high degree of clustering, but the centers of the 
clusters vary over a range of separations. This is because at high e/N 
the interaction between unlike vortices can add only a small fraction to the 
total interaction, which allows the separation to vary over a range. Conse- 
quently, the probability of ~ for two well-separated clusters is similar (but 
not identical, as shown below) to that of a two-vortex system, ~2 = -f(r), 
plotted in Fig. 8. Note the large probability between the interval of 0.3 and 

5 

1 

0 , �9 
-1.0 -0.6 -0.2 0.2 0.6 1,0 

~2 

Fig. 8. Normalized probability density for ~2 = - - f ( r l - - r2 )  in square and rectangular 
periodic cells, as marked. This is also an important  part of the probability density for ~U at 
high energy, where the vortices separate into two tight clusters of opposite sign. 
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0.7; this accounts for the observed spread of ~ N  at higher energies. Saddle 
points at f(1/2,  0) and f(0,  1/2) cause the cusp singularity. The shape of the 
unit cell influences the distribution probability of vortex clusters at high 
energy, just as the shape influences solutions to the sinh-Poisson equa- 
tion. ~19) This is illustrated in Fig. 8 by the probability density for a 
rectangular unit cell having LI:L 2 = 1: 2. 

3. The data suggest that ~N(e) is a function of e/N, and Fig. 7 uses 
e/N as the independent variable to highlight this relationship. This is 
consistent with the data in Fig. 6. One interesting consequence of this 
relationship is that for fixed e, the clustering of the vortex system decreases 
with increasing N. The suggestion that the cluster energy ~N(e) iS a func- 
tion of e/N is made more compelling by estimating the distribution of ~N 
for fixed e/N and different N. This is shown in Fig. 9 for N = 20 and 80, and 
e/N= 0.25, 0.50, and 1.0. Indeed, the modes of the distributions are equal 
for equal e/N. Also, the variance increases for larger e and decreases for 
larger N. 

The high-energy behavior of f i N  is further revealed by considering the 
joint probability, 

Nj2 N f/j) 2 2 
i = l  j = N / 2 + I  

(3.5) 

For tight clusters the positive vortex positions are within a disk of radius 
R+ centered at r+; likewise for the negative vortices within R_ at r . The 

2 0  

I 5  

10 

.o 
o 
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curve N e e/N 
a 80 20 0.25 
b 80 40 0.50 
c 80 80 1.00 
d 20 5 0.25 
e 20 10 0.50 
f 20 20 1.00 

0 
0.1 0.2 0.3 

/i 

0.4 

;N 

b 

. , . , , 

0.5 0.6 0.7 

Fig. 9. Probability density (normalized and smoothed) of ~ N  at various fixed interaction 
energies e for N = 20  a n d  80. Each of these estimates is based on 5600 samples. 
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above integral can be approximated by introducing the coordinate r+ - r  
between clusters and taking all vortex coordinates relative to the center of 
their respective cluster, r j - r +  ~ rj. The first g function in (3.5) becomes 
6 ( ~ + f ( r + - r  )) and its integral (over r + - r  ) is just the probability 
density P0(~) of Fig. 8. The remaining integral becomes 

if ( Po(~) AN dr1"'" drN c5 e-- ~ ZZ f~J-- ~ ZZ fo 
i < j  i < j  

It is convenient to write this as the derivative of a distribution function for 
the phase space volume corresponding to the cluster energies being greater 
than e - N~/4, 

P((,e) 
t'o(~) deA-N f d r l ' " d r NO -e+TC+ EEZ,+ . . Z,. 

l<J  

(3.7) 

The lowest energy E for M identical vortices in a small disk of radius R 
occurs when they are equally spaced on the circumference of the disk, 

E(R) ~,'~ ~ l o g ( j r ' T L  2r'12) 
i < j  i < j  

_ 20og + 0 

1  M,M 1,(3-,og4 2) 
(3.8) 

where the expansion off( r )  from (2.5) for small r was used for the first line 
and the integral evaluation for the energy of the vortices on the circum- 
ference was used for the second line, in which c =  1.314. Therefore, the 
phase space of M vortices having higher energy than the ring is propor- 
tional to (nR2) M, corresponding to all possible positions of vortices in the 
disk. From (3.7) the minimum energy must be apportioned between the 
two disks; if the disk with N+ vortices has minimum energy E+, then 
the disk with N_ must have minimum energy E =N(e-N~/4)-E+. 
Then Eq. (3.7) becomes 

Po(~) deAN[nR2+(E+)]N+ nR~ Ne-N2~4 E+ (3.9) 

Solving (3.8) for R gives 

R(E)=Lexp( M2E c) (3.10) 
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Substituting this into (3.9) and integrating over the energy partition, 
0 <~ E+ <~ N(e - N~/4), gives the relative probability, 

P(~'e)=P~ [zrexp(-2c)]S ( - ~ + e x p I -  N+ - 1/N+ 

- -exp - e -  (3 .11)  

For the neutral system, P((, e ) ~ P o ( ~ ) e x p ( - 4 e  + N(), which shows a 
strong preference for the largest possible cluster separation (i.e., largest () 
when N is large. For e >> N(/4 only the term associated with the majority 
species remains significant in (3.11), which isequivalent to saying that only 
configurations that preserve the majority cluster are statistically significant: 
only one cluster occurs in the most probable states of high energy, nonneutral 
systems, viz., the cluster for the majority species. To our knowledge this 
basic property of vortex systems has not previously been noted. (A shorter 
derivation is given in Section 5.) The same argument diminishes the 
probability of multiple clusters in high-energy systems of one sign. 

We now demonstrate that using vortices to model a continuous 
inviscid fluid results in configurations having high e. By "model" we mean 
the following: given the initial condition of the continuous fluid in the 
periodic cell, one constructs a point vortex configuration that approximates 
the given vorticity distribution. Since the point vortex system is a singular 
solution of the Euler equations, the evolution of the (finite-dimensional) 
point vortex system should approximate the evolution of the (infinite- 
dimensional) continuous system, at least for some interval of time. The 
larger the number of point vortices in the system, the more accurately the 
continuous vorticity distribution is simulated, and the longer the interval; 
see Goodman et al. ~2~ for related convergence results. (Because the Euler 
equations excite arbitrarily small scales, the systems must eventually 
diverge. ) 

Assume as given the continuous initial velocity field v, vorticity dis- 
tribution co, and total kinetic energy W for the fluid in the periodic cell. 
It is convenient to break co into its positive and negative parts, 
co+ =co0(_+co), so that co=co+ +co . As usual we assume that the total 
vorticity in the periodic box is zero, ~ co+ = -~  co . Let F =  ~ [col, and pick 
a large even integer N. Consider the system of N point vortices, half with 
circulation F/N and half with -FIN.  Choose positions for t he+  
and-vor t i ces  so as to approximate co+ and co_, respectively. For exam- 
ple, approximate co by a step function &, and then place point vortices in 
a regular pattern at the appropriate densities in the level sets of &. This is 



512 Campbell and O'Neil 

far from a unique specification, but we will see that the details of the 
configuration are unimportant, so long as the point vortices are not placed 
too close together. 

Consider the energy of this configuration. Because the vortices are 
being subdivided in a constant area A, (2.2) must be generalized to include 
a general core energy per vortex, e = F2cl log c2N, where cj are constants. 
Then, the total kinetic energy of the fluid inside the periodic cell is (sub- 
stituting F/N for F in e), 

/~2 
W N = - ~  (F-,-]- c 3 log N+ c 4 + eN) (3.12) 

In accordance with previous usage, the quantity eN has been computed 
with circulations of absolute value 1. (For this reason, we shall not refer to 
e N as "energy density" in this section.) Clearly in the limit of large N the 
logarithm term vanishes and we have WN--* F2eN/N. On the other hand, 
the double summation I'2eu/N= N 2 Z X  FiFjf(ri--r~) is an approxima- 
tion of the Lamb energy integral 

f f  ~o(rl) ~o(r2)f(rl-r2) dr1 dr2 (3.13) 

which equals the energy W. Thus, in the limit of large N, we find 
eN ~ NW/F 2, and the configurations used to model the continuous flow 
have very large values of e and therefore lie deep in the negative-tem- 
perature region. It is interesting that the configurations needed to simulate 
realistic (i.e., continuous) fluid flow are exactly those which are excluded 
from the formal thermodynamic limit! 

There is a further regularity about these configurations which gives 
some insight into the statistics of the continuous fluid system. In this we 
make contact with recent work by Miller3 21) For large N, the configura- 
tions have the same value of e N / N  , namely W/F 2, and by Fig. 7 all have 
the same expected value for the separation function (u- But this function 
in turn is an approximation to a variant of the Lamb integral, 

~ = ~  f f  ~o+(rl)co (r2)f(r~--r2)dr1 dr2 

\ F/2 J \  F/2 J f ( r l - r i )  drldr2 (3.14) 

(Recall that So)+ = - S ~ o _  =F/2.) Clearly this integral gives the same 
information as the discrete (N, taking its maximum at the degenerate con- 



Statistics of 2D Point Vertices 513 

figuration of two-point concentrations of vorticity, and indicating by near- 
ness to this maximum the degree of separation of the vorticity of opposite 
senses in the unit cell. Taking the limit N ~ ~ ,  we arrive at the conclusion 
that the integral ~ will have the time average predicted by Fig. 7, taking 
W / F  2 for e/N. (The quantity W/I  "2 represents the energy of the fluid after 
rescaling the velocity field to make /~  = 1.) 

Several points deserve emphasis. First, the normalized energy W/E 2 is 
positive, so our model predicts a positive value for the average of ~. 
Second, if the initial condition of the fluid makes this normalized energy 
large, then the emergence of two maximally separated coherent vortices is 
a statistical phenomenon, applying to any system with the same state 
space, interaction energy, and ergodic dynamics. The emergence of these 
vortices is commonly observed in simulations of the relaxation of fluids at 
high Reynolds numbers; such effects of viscosity are discussed in the next 
section. Finally, we note that while our finite-dimensional point vortex 
systems cannot simulate the arbitrarily fine scales which are excited by the 
Euler equations, we find that all sufficiently resolved point vortex systems 
compatible with the continuous fluid system give the same prediction of 
this coarsest scale of motion, which simulations have shown to dominate 
the flow. 

To further illustrate the previous discussion, Fig. 10a shows a neutral 
initial state consisting of 200 vortices in several tight clusters (so tight that 
most vortex symbols are hidden by overlap). Figure 10b shows the evolu- 
tion of this initial state to the expected two-cluster state using a random 
walk at constant energy e = 112 within an interval Ae < 0.02e. The generic 
probable state in Fig. 10b agrees with the stable continuum state Carnevale 

~_ o . �9 

b 
I I I I I I �9 J I I I ~ J ~ ~  I r I t "1  " 1  

Fig. 10. Configurations of 200 vortices (equal numbers of+and ) having e= 112 in a 
periodic cell of side L. (a) Length of random step ~< 0.05L. (Most vortices are hidden by over- 
lap in the tight clusters.) (b) Length of random step~<0.4L. Pattern (a) was generated by 
accepting only higher-energy steps starting from a low-energy random distribution. Pattern 
(b) evolved from (a) by random steps at constant energy (+2%). 
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and Vallis find by quite different methods: maximizing energy while 
keeping the system on an isovortical sheet. (22) In addition, Fig. 10a 
illustrates the bias introduced by a small step size: this highly improbable 
state was produced by a random march from an initially low-energy, 
random configuration by using a maximum step size of only 0.05L. The 
more probable state in Fig. 10b was obtained from Fig. 10a in about 
5000 steps with a maximum step size of 0.4L. If the smaller step size had 
been used to evolve Fig. 10a at constant energy, the same final state would 
have been obtained through drift and merger of the tight clusters, but only 
after far more steps. (The probable configuration in Fig. 10b could have 
been obtained directly by using the larger step size to march the low-energy 
configuration to higher energy.) 

High-energy vortex states in a box show distinct differences from those 
in a periodic cell. Although a random walk from an initial random con- 
figuration to higher energy, as described above, leads always to two well- 
defined, separated clusters of opposite sign, as occurs in the periodic cell, 
this seems not to be the most probable distribution. Further random steps 
at the fixed high energy causes one of the clusters to break up and spread 
around the boundary while the other cluster moves toward the center of 
the box and becomes even more compact than initially. For a nonneutral 
system the compact cluster is the majority species. The average intervortex 
spacing Ar+_ among vortices of equal sign reveals this evolution in Fig. 1l. 
This behavior is suggestive of the solution to the sinh-Poisson equation 
that has a single extremum. (1~ Vortex clusters corresponding to other 
solutions of the sinh-Poisson equation, such as four equal clusters on a 

0.8 / 
N = 40 Z~r Random walk at constant 

] e/N = 0.75 ~ - +j high energy in a box. 

== ~t 

~ 0,4 

0 2.-~ ]~[ / ,~  N -  80 ..... 

oo  o ; 
0 5000 10000 15000 20000 

step 

Fig. 11. Average intervortex separations among positive vortices Ar+ and negative vortices 
d r_  in a box as a function of the number of random steps constrained by fixed energy e. Two 
cases are shown: N =  40, e = 30 and N -  80, e = 50. The initial state consisted of two well- 
defined clusters for which Ar+ ~ Ar . Random steps at constant energy cause one cluster to 
spread and the other to shrink. 
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checkerboard, were put in "by hand" and allowed to evolve at constant 
energy. These, too, tended to break up into one well-defined cluster and a 
diffuse collection of the opposite sign nearer the boundary, consistent with 
the instability of similar sinh-Poisson solutions. (1I~ The number of steps 
needed for this evolution to occur becomes much greater at higher energy, 
making impossible any conclusion from the numerical evidence that the 
same final state occurs at arbitrarily high energy. Also, the final state may 
be different in boxes with aspect ratio different from 1. 

4. R E L A X A T I O N  OF H I G H - R E Y N O L D S - N U M B E R  
F L U I D S  TO H I G H - E N E R G Y  V O R T E X  S T A T E S  

In the previous section it was shown how increasing the number of 
vortices at constant total energy and vorticity led to negative-temperature 
states; here we show how a system is driven to negative temperatures by 
the dissipative loss of vorticity. No dynamical equation is employed; as a 
result we can say nothing about the flow apart from statistical properties. 
This is a different and more restricted vortex model of dissipative behavior 
than that of Chorin, in which vortex motion is based on advection with the 
local stream velocity plus a random component with variance proportional 
to the time step divided by the Reynolds number. (23) 

As pointed out by Kraichnan and Montgomery, ~5) turbulent flows are 
out of equilibrium in two respects: the macroscopic excitation of 
hydrodynamic modes is a departure from thermodynamic equilibrium with 
any heat bath and the hydrodynamic modes are typically in disequilibrium 
among themselves. The former disequilibrium we treat by allowing any pair 
of opposite-sign vortices to self-annihilate if they are sufficiently close; a 
prescription based on the known concentration of viscous dissipation at 
short distances for large Reynolds number. (Of course, there is no point in 
explicitly balancing the lost kinetic flow energy with added heat in the fluid 
unless important flow parameters such as viscosity or density are changed 
by a rise in fluid temperature.) The latter disequilibrium we treat statisti- 
cally by performing a random walk over vortex configurations at constant 
energy (between e and e + Ae). In this way the vortex configuration moves, 
apart from fluctuations, from improbable (disequilibrium) to probable 
(equilibrium) configurations, as illustrated in the evolution of Fig. 10a to 
Fig. 10b. When a vortex pair disappears the remaining configuration is 
typically left in a relatively improbable state and adjusts over subsequent 
random steps. 

We start with a neutral configuration of vortices randomly placed in 
the square periodic cell. Goodman,  Hou, and Lowengrub proved that the 
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point vortex approximation to the 2d incompressible Euler equations 
enjoys consistency, stability, and convergence/2~ Therefore, we might 
expect statistical flow properties of the Eulerian fluid to be well- 
approximated by vortex dynamics. If the vortex system is ergodic, then the 
statistical properties can be obtained by averages over phase space instead 
of time averages of the dynamical equations. Although the ergodicity of the 
vortex system has been recently questioned (24) on the basis of numerical 
results for six vortices, we explore the consequences of relying on phase 
space averaging to obtain statistical behavior for a number of vortices 
sufficiently large to fairly represent the convergent probability distribution. 
For this, six vortices are too few by a significant factor. 

In particular, we generate a random vortex configuration and use a 
random walk at constant energy to generate subsequent vortex configura- 
tions. A small viscosity is introduced by annihilating, in the course of the 
random walk, any pair of opposite-sign vortices that become sufficiently 
close. As mentioned above, this reflects the well-known dominance of dis- 
sipation at high wave numbers in high-Reynolds-number fluid flow and the 
attending cancellation of opposite vorticities at short distances. On larger 
distance scales the high-Reynolds-number fluid is inertial, i.e., Eulerian, 
and here the random walk at constant energy continues to rearrange the 
vortex configurations until other opposite pairs become close and are 
annihilated. 

Besides reducing the number of vortices, pair annihilation increases 
the energy per vortex of the remaining vortices (because the energy of the 
lost pair is negative), but only weakly decreases the total energy NEN, 
especially in the late stages. The persistent loss of close + - pairs increases 
the average separation between the remaining + a n d -  vortices and conse- 
quently increases the average interaction energy, i.e., the vortex separation 
energy ~N increases. Thus, the effect of annihilating pairs in response to 
weak viscosity is to drive the system deeply into the negative-temperature 
region. Close encounters of + -  vortices are initially quite frequent (in 
terms of the number of random steps between annihilations), but become 
relatively rare when well-defined vortex concentrations begin to emerge in 
the manner found by McWilliams from integrating the Navier-Stokes 
equations. (2s) If the random walk is continued for much longer "times," the 
local vortex concentrations eventually become concentrated in two global 
clusters of opposite sign, quite similar to that found in the long integration 
runs by Matthaeus et  aL (26) 

The above behavior is illustrated in the Figs. 12-14 for a typical evolu- 
tion of 200 vortices starting from a random configuration with e = 5, which 
was achieved by first marching a lower energy random configuration to 
higher energy (as described in the previous section) before starting the 
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relaxation. (This procedure merely saves time; the relaxation of some larger 
number of vortices starting at lower energy e would pass close to N--- 200 
and e = 5.) 

Figure 12 shows the evolution of the + - vortex interaction energy ~, 
the number  of vortices N, and the total energy NE(N). (The last two are 
normalized with respect to their initial values.) The number  of steps count 
only those random steps for which the energy falls within the interval Ae 
about  e. (Here, Ae=0.2 . )  Following an annihilation of a + -  pair, the 
interaction energy density e increases, but Ae is held constant. The total 
energy decreases much less than the number of vortices, especially in the 
last two decades of the four-decade interval, where the interaction energy 

rises to near its limit. 
Streamlines of the system at steps 1, 161,921, and 8521, corresponding 

to N = 2 0 0 ,  100, 50, and 32, are shown in Fig. 13 with a resolution of 
128 x 128. The resolution of vortex positions was 1024 x 1024; relaxation 
runs using higher resolution, 2000 x 2000, exhibited no observable dif- 
ference for 200 vortices. The criterion for annihilation was a + -  pair 
separation (modulo L) of both Ax and Ay <<, 0.05L, where L is the dimen- 
sion of the periodic cell. The value of the annihilation distance is not 
critical; it should be small enough to permit several equilibrating steps 
between annihilations and large enough to permit an observable rate of 
annihilation. As might be expected from the absence of dynamics, there is 
no obvious filimentary structure associated with regions of concentrated 
vorticity, as seen from numerical simulations using the Navier-Stokes 
equation. (25'26) Also, the streamlines show numerous small-scale deflections 

1 0  

0.8 ' \  
N E(N)/1353. 

z. 0.6 
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N/200 
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Fig. 12. System parameters during the viscous relaxation of 200 vortices (equal numbers 
of+and-)  with an initial energy e= 5. Each step is a random vortex displacement that 
preserves the energy density e within de. The system parameters change whenever a + - -  
vortex pair becomes sufficiently close to be annihilated due to viscosity. 

822/65/3-4-7 
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as a result of the high velocities near point vortices, even though the vortex 
velocities were smoothed over a grid size 1/128 x 1/128 corresponding to 
the resolution. As can be seen in Fig. 13, the initially chaotic state becomes 
progressively differentiated into regions of like-sign vorticity, leading finally 
to two regions maximally separated on the diagonal like that found by 
Matthaeus et a/. (26) 

The modal energy spectra E(k) corresponding to the streamlines in 
Fig. 13 are shown in Fig. 14. (S E(k) dk is proportional to the total energy.) 

Fig. 13. Streamlines corresponding to the viscous relaxation of Fig. 12. (a) N = 200, step = 0; 
(b) N =  100, s t ep=  161; (c) N = 5 0 ,  step =921; (d) N = 3 2 ,  s t ep=  8521. 
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<<< 

Fig. 13. (Continued) 

Unlike the case of continuous vorticity, point vortices cause the high k 
values of E(k) to remain large at all stages. In the last stage, N =  32, the 
energy spectrum at low k is very close to that of two vortices with circula- 
tions F =  +16, shown by the solid curve without symbols. The trend is for 
energy to increase in the lowest modes and to decrease in the highest, as 
seen in spectral calculations. 

The relaxation so far described is, of course, only an intermediate state 
in the viscous relaxation to total quiescence. Although we have not 
attempted it, further relaxation to any desired level of remnant vorticity is 
possible by successive refinement of the vorticity, as described in the pre- 



520 Campbell and O'Neil 

200 

* 1 O0 

�9 50 

32 

- -  = 

10 5. 

104 .  

10 a. 

102 .  

101.  

10 
.01 

A 

Fig. 14. Energy spectra corresponding to the streamlines of Fig. 13. 

vious section, followed by the same prescription of vortex-pair annihilation. 
In this way even the essentially laminar late stage of the initial turbulent 
state, as represented by Fig. 13d, may be followed, in principle, to its linear 
viscous end, although the evolution should be quite different from that 
starting from a turbulent state. However, it remains to be seen if the 
statistical description of laminar decay can be as successful as that of 
turbulent decay. Because there is no inertial range in laminar decay, the 
approximation made here of confining viscous effects to the annihilation of 
+ - vorticity at a fixed distance would be questionable. 

5. D I S C U S S I O N  

The statistical theory of vortex systems is well-founded. By this we 
mean that, as N ~  o% there exist rigorous limiting probability densities of 
phase space volume as a function of the interaction energy per vortex e. 
These exist both for the periodic cell containing vortices of arbitrary signs 
(and strengths) and for the box containing neutral as well as special cases 
of nonneutral vortices (finite vorticity proportional to the box perimeter or 
constant vorticity under refinement). In every case the probability density 
has a mode at finite e, which defines the boundary between regions of 
positive and negative temperature, independent of vortex number. The 
expected values ( e )  for vortices in a periodic cell and neutral vortices in 
a box both occur at negative temperature. These results are summarized in 
Table I. We believe Table I lists all the possible limiting distributions of 2d 
point vortices in a periodic cell or box. Many properties of the U-statistic 
distributions remain to be calculated. 
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A generally accepted physical assumption for vortex systems is that 
"the thermodynamic limit is a good approximation for the description of 
large, finite systems at moderate densities and energies. "(2) The work here 
shows this assumption cannot be extended to high energies because the 
generic negative-temperature state that occurs in every large, finite system 
is missed by the formal, nonuniformty convergent limit with respect to the 
total energy density EN. We further show that the requisite energies for the 
negative-temperature region are easily achieved in the course of 
approximating continuous vorticity by discrete vortices either as an initial 
condition (to be evolved by some method) or as a statistical model for the 
relaxation of a high-Reynolds-number fluid. 

By identifying the energy density as a U-statistic of degree two, 
the rigorous existence and construction theorems from mathematical 
statistics (17'~6) concerning limiting distributions can be used with a con- 
siderable savings of effort compared with ab initio approaches, m) We made 
use only of the existence theorems here. However, procedures are known ~ 
for constructing the characteristic functions for distributions of U-statistics 
from the eigenvalues of the kernel. 

Our calculations of probability densities are based on direct estimates 
from random sampling, rather than construction mentioned above. 
Nevertheless, we believe they are accurate within the errors listed in 
Table I, which are sufficiently small to test approximate theories: 

(i) Edwards and Taylor (a) evaluate the random phase approxima- 
tion to find the onset of negative temperature at the energies ema x = --0.197 
and --0.203, by numerical and steepest descent methods, respectively, 
compared to ema x = --0.255 ___ .005 from Table I for the periodic cell. 

(ii) Pointin and Lundgren (~~ use mean-field theory to predict the 
maximum of the probability density for neutral vortices in a box. From 
their Eq. (43), in our notation, 

(EN)ma x = -0.154(4~) + (1/2) log N 

= E +  (1/2) log 4 N +  emax 

where the second expression relates N vortices in a box to 4N correlated 
vortices in a periodic cell, as explained in Section 2. Solving for ema x gives 
ema x = -1.32, compared with Table I, ema x = --1.40 • 0.03. 

(iii) The maximum of the probability density for the periodic cell 
is predicted (9"7) by the random phase approximation to occur at 
(Eu)max=E+(1/2)logN, i.e., at emax =0.  But from (2.8), <e> =0 ,  and we 
know from U-statistics that the distribution is skewed. Therefore, it would 
be unlikely for <e> = emax; indeed, emax = --0.255 _+ 0.0.005 from Table I. 



Statistics of 2D Point Vert ices 523 

(iv) A form of the vortex energy equivalent to (2.2) was obtained by 
Seyler, who furthermore derived thermodynamics by obtaining an explicit 
formula for the probability density, (9) 

g2rpa(e) = g?0 exp{ 1 -- 2(e-- Co) -- exp[--  2(e-- e0)] } (5.1) 

where our notation is used. (Seyler's e2/l= 1/2 here.) This derivation was 
based on the random phase approximation (rpa) following Taylor. (27) The 
maximum of ~?rpa(e) occurs at Co, which, according to Seyler, has the value 
Co=0. This value, however, is inconsistent with the fact that ( e ) = 0 .  
Shifting eo to -0.284 to obtain ( e ) = ~  ef2rpa(e ) de=O gives much better 
agreement with the numerical results (that are exact within sampling 
error). Even so, ~'~rpa(e) is still too large in the high-energy tail, as seen in 
Fig. 15, where (5.1) with and without the shift is compared with the 
numerical estimate of Fig. 1. 

By contrast to the statistical theory of vortex systems, the thermo- 
dynamic theory is not so well founded--it  fails in at least two respects. 

First, the formal thermodynamic limit is not uniformly convergent. We 
showed in Section 2 that the maximum of the probability density occurs at 
a value of the energy density which increases with N exactly as log x /N 

(equivalently, log ,,/-A). In this sense, there is no negative temperature in 
the limit N ~ oe. {2) However, negative temperature is a ubiquitous feature, 
being present in any finite vortex system or any infinite lattice with a finite 
unit cell. Moreover, the negative-temperature region approaches a rigorous 
limiting form independent of N. Therefore, it is reasonable to preserve 
negative temperature as N-~ oo by considering thermodynamic functions 
with respect to E - l o g  x/N. 

Numerical: 200,000 events 2o'./ J 
g 0.8 I " -  '" / 

- l . a  

v- i I/," / Random phase approx. (shifted) 
0,6 Z / ,/ 

.~ 0.4 

o ha e approx. 
m. 

0.0 
-2  -1 0 1 2 

e 

Fig. 15. Numerical distribution function for vortices in a square periodic cell averaged over 
N= 20, 40, 80, 160 (total of 200,000 events) compared with random phase approximation" . -(91 
(solid curve) and rpa adjusted to give the correct expected value, ~e)= 0 (dashed curve). 
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The second failure is more severe and is caused by the argument of the 
limiting probability density being intrinsic instead of extrinsic. That is, 
~f'~N(~) ~ f2(e), where f2(e) is the function estimated in Figs. 1, 3, and 4 for 
different cases. As a result, the temperature becomes 

T A N Q(e) 

which is not intrinsic and, therefore, not thermodynamic, as pointed out 
years ago by Edwards and Taylor. (8) [These difficulties disappear, of 
course, with a finite-ranged interaction, such as the modified Bessel 
function Ko(r/2) appropriate for superconducting vortices. (8)] Note that 
(5.2) does not rule out the existence of an intrinsic temperature if for some 
range of T in the interval 0 ~< T < oo there exists E for which 

lim ~c, f 2 N ( E - E - l o g  x/-N ) =-1 (5.3) 
u~oo N E2N(E_~_logx/-N) T 

If so, then this could be interpreted to mean that, in the thermodynamic 
limit, there was a well-defined intrinsic energy as a function of temperature, 
E(T). Clearly, such a relation E(T) would also have to depend on the ratio 
N+/N because for N+/N = 1 the energy per vortex is bounded below, while 
for O<N+/N< 1 the energy per vortex is unbounded below. 

The mere existence of a limiting density s may determine the relation 
between E and T in the thermodynamic limit, however. If the convergence 
in density is sufficiently fast so that ON may be replaced by f2 in (5.3), and 
if the limit exists for one value of E, then the limit exists for all values and 
T(E) = T(0) exp(2E). 

Nevertheless, the quantity NIT for vortices in a box appears in the 
literature as calculated from the sinh-Poisson equation (1~ for a nonneutral 
system and from the random phase approximation (11) for a neutral system. 
We show NIT in Fig. 16 as obtained from the limiting numerical estimates 
of f2(e) for the periodic cell, neutral box, and box with surface vorticity. 
The inset shows dimensionless heat capacity at constant area, 

CA 1 (~3g) EQ'(e)/QI 2 (5.4) 
KB KB ~ A = [g2'(e)/f2] 2 -- s 

for the periodic cell and neutral box. There is no anomalous N dependence 
in the heat capacity. 

Our NIT for the neutral box agrees qualitatively with ref. 11, but our 
exact analysis is not consistent with the "sinh-Poisson" values of NIT for 
the nonneutral box from ref. 10. From (2.16) and (5.2) it is easy to see that 
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2 0  �84 

= 4 3 E:~ box periodic 

lo ~- 
p- 

5 . . . .  

-2.5 -2.0 -1.5 1.0 -0.5 0,0 0.5 
e 

o 

box (neutral)  per iodic  cell box  (non-neu t ra l )  
_ ~  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  

-3  - 2  -1 0 1 2 3 4 

e 

Fig. 16. Inverse dimensionless temperature numerically derived from the limiting distribu- 
tions in Fig. 1 (periodic cell), Fig. 3 (neutral box), and Fig. 5 (box with perimeter vorticity). 
The units of lIT are 4~:B/p7 2, where p is the fluid mass per unit area and y is the unit of 
circulation. Inset: corresponding heat capacities at constant area for the periodic cell and 
neutral box. 

the temperature with respect to e/N (equal within constants to Pointin and 
Lundgren's E) is exactly 

N e/N--  (n + -- n _ )2 1-211/2 
T =  (n+ --n_)2 F4((112i)--112 ) (5.5) 

unlike Fig. 3 of ref. 10, which shows a highly nonlinear relation between 
NIT  and e/N. Clearly, the sinh-Poisson equation needs to be improved for 
the nonneutral case. 

In view of the thermodynamic failures discussed above, the physical 
content of the Sa lzberg-Prager -May equation of state (3'4) may be ques- 
tioned. This relation follows from the form of the energy in (2.2), which 
isolates the dependence on A in the logarithm, 

NE(r l  ,..., ru) = NF-7(JF + log w/-A) + Ne (5.6) 

The entropy S(g, A ) =  KB tog[AUg2(g, A)],  where the probability density 
f2(g, A) = S ' "  S drl ""drN 6 ( g -  NE) involves integration over dimen- 
sionless unit squares. The formal equation of state now follows easily from 
the thermodynamic definition of pressure, 

\~gJA 

A L z \'+~z } 
(5.7) 
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where we used t% T= ~2(dO/dg) 1 and inserted the dimensional energy 
p72/4rc for completeness. Note the indifference of this expression to the 
mixture of vortex signs, to the form of the interaction e, and to the 
existence of limiting distributions. No compressibility of the underlying 
fluid is assumed, although (5.6) implicitly assumes the background density 
changes with A to maintain overall neutrality. The need to distinguish 
between the above "pressure" and the conventional pressure of systems 
with mass is emphasized by Kraichnan and Montgomery. (5) 

Although the (more probable) statistical properties as a function of e 
of the vortex system are effectively the same for N >  20, the appearance of 
the system is decidedly not. In particular, the tendency of vortices to 
separate into clusters of like sign on the scale of the periodic cell is strongly 
N-dependent. Evidence points to the average energy ~N(e) between vortices 
of opposite sign being a function of e/N (Figs. 6 and 7). That is, macro- 
scopic separation of opposite-sign vortices, often identified as the hallmark 
of negative temperatures, asymptotically disappears as 1/N for fixed e. Con- 
versely, for any fixed N, macroscopic separation will occur at sufficiently 
large e, and the shape of the unit cell influences the probability of finding 
the two opposite-sign clusters in a particular position (Fig. 8). The 
existence of two separated clusters at high energy only occurs with high 
probability for neutral systems. Such cluster pairs are still not equivalent to 
two vortices with circulations +_NF/2; cf. (3.11). 

Asymptotic cluster behavior at large energy is easily derived by noting 
that the phase space volume ~N(~ ~ for + vortex clusters of radii r+ (nor- 
malized to L) having energy greater than g is ~N(~)~ r2+U+r 2N-. For suf- 
ficiently small clusters the presence of both the periodic boundaries and the 
intercluster energy may be ignored, giving g ~  - N  2 log r + - N  2_ log r_. 
Solving for r+ and substituting in q~N gives the probability density 

~g 2 
~r~N(~ ) = _ _  ~N(O~'o) =~++ rZ(N+ U_)U_/U+ exp(--2N/N+) (5.8) 

If N+ > N_, the probability is maximum when r is as large as possible, 
r ~ 1, which requires r+ to be as small as possible. Thus, only the majority 
cluster is probable, and we have the asymptotic form (2N(e) ~ exp( -- 2Ne/Nm) 
and the corresponding temperature l /T= --8rclcB/Nmp7 2, where N m is the 
number of the majority species (and we have included dimensional forms). 
This generalizes a finding of Edwards and Taylor for neutral systems. (8) 
Whether or not mean-field theories, such as sinh-Poisson, can predict 
preferential clustering for the majority species remains to be seen. To avoid 
misunderstanding, we should emphasize that the apparent paradox of T 
depending on the mixture of vortex signs while the limiting distribution is 
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rigorously independent of both signs (and strengths) occurs because we 
considered properties of the high-energy tail of the probability density for 
finite N. The vanishing tails of finite-N distributions at asymptotic high and 
low energies can differ from the limiting distribution. Nevertheless, we find 
that all sufficiently resolved models give a consistent prediction of certain 
features of the continuous evolution, based on a statistical argument. 

One obstacle to the validity of point vortex models of continuous fluid 
is that the continuous fluid has many more conserved quantities, related to 
the vorticity distribution, than does the model. A possible explanation for 
the consistency of the data in Fig. 7 may lie in a statistical theory recently 
put forward by Miller. (21) In this theory, the continuous vorticity distribu- 
tion is modeled by a sequence of point vortex configurations which lie on 
a lattice; the canonical partition function then converges to a limit (at least 
in the case of zero temperature) as the lattice becomes infinitely fine. 
In other words, the continuous system is modeled by a sequence of 
increasingly resolved discrete systems, as in the discussion in Section 3. 
Miller finds that the only quantity conserved at equilibrium on macro- 
scopic scales is the total vorticity (also conserved by point vortex systems). 
Further, the equilibrium configuration is that which maximizes the energy, 
given the observed macroscopic vorticity distribution. This is consistent 
with the "selective decay" theories proposed by Montgomery and others. 
Such configurations have been investigated numerically (under periodic 
boundary conditions) by Carnevale and Vallis, (22~ who find them 
invariably to be two clusters. Thus, Miller's findings, based on the canoni- 
cal distribution, are consistent with ours based on the microcanonical. 

The decay of high-Reynolds-number flow in two dimensions contains 
generic features that are statistical phenomena--not only is the final state 
of well-separated clusters achieved by a purely random walk, but inter- 
mediate-state properties also bear a reasonable resemblance to integration 
results. Moreover, the relative number of random steps necessary to pass 
through the various stages correlates well with dynamical times. We 
estimate that the computation time required to statistically evolve the 
vortex model is less than 10 - 4  of that required using direct integration of 
the dynamical equations at comparable resolution. Of course, other features 
of the decay, such as the tendrils accompanying the dynamic merger of 
vorticity regions, lie outside this treatment based on relative phase volume. 

The decay of the vortex system (through viscous loss of + -  pairs) 
reduces the available phase space, as does the decay of all dynamical 
systems. Once the vortex system enters the negative-temperature region, 
the contraction of phase space drives the system to even higher energy den- 
sity (energy per vortex), necessarily resulting in the emergence of coherent 
flow structure (vortex clusters) from an initial state of randomly distributed 
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vorticity. Thus, the "particle-like behavior of the vorticity" referred to by 
Matthaeus e ta l .  (26) has a natural interpretation in the statistical vortex 
model of relaxation. The fact that a rigorous limiting distribution underlies 
the phase space probability as a function of energy density justifies the 
implicit modeling assumption of uniform and generic statistical behavior as 
N decreases (so long as N >  20). Onsager's mechanism, coupled with the 
viscous annihilation of proximate and opposite vorticities, explains the 
appearance of well-defined vortices in a fluid where the vorticity is 
smoothly spread out initially. 

It should not be surprising that negative temperatures have a strong 
relation to flow states, especially those at high Reynolds number. As noted 
by others, the high-grade energy represented by flow is not thermo- 
dynamic, i.e., it is induced not by contact with a heat bath, but by 
mechanical force. Like the decay of other systems having nonther- 
modynamic states (e.g., inversions of excitation populations), the decay of 
high-Reynolds-number flow can pass through unexpected intermediate 
states having coherent structure (as inverted populations of atomic levels 
can generate coherent electromagnetic waves). 
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